Vidya Pratishthan's

Dr. Cyrus Poonawalla School (CBSE)

Annual Planning 2024-25

Sub- Chemistry (I)

Class: XII

Month/Unit/No. of Periods	Topic /Sub Topic	Learning Objective/outcome	Practical/Project
March, April Unit I: Solutions No. of Periods -19	Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, Raoult's law, colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties.	 Students will be able to Describe the formation of different types of solutions Express concentration of solution in different units. State and explain Henry's law and Raoult's law. Distinguish between ideal and no-ideal solutions. Explain deviation of real solutions from Raout's law. Describe colligative properties of solutions and correlate these with molar masses of the solutes. Explain abnormal colligative properties exhibited by some solutes in solutions. 	Worksheet, MCQ Test.

May, June Unit II: Electrochemistry Unit:16 No. Periods-16	Redox reactions, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, Relation between Gibbs energy change and EMF of a cell, conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration, Kohlrausch's Law, electrolysis.	 The student will be able to Describe an electrochemical cell and differentiate between galvanic and electrolytic cells. Apply Nernst equation for calculating the emf of galvanic cell and define standard potential of the cell. Derive relation between standard potential of the cell, Gibbs energy of cell reaction and its equilibrium constant. Define resistivity (ρ conductivity (K) and molar conductivity (Λ) of ionic solutions. Differentiate between ionic (electrolytic) and electronic conductivity Describe the method for measurement of conductivity of electrolytic solutions and calculation of their molar conductivity; Describe the method for measurement of conductivity of electrolytic solutions and calculation of their molar conductivity; Describe the method for measurement of conductivity of electrolytic solutions and calculation of their molar conductivity; Describe the method for measurement of conductivity of electrolytic solutions and calculation of their molar conductivity. Institute the wariation of 	Project: 1) To study the presence of Oxalate ion in Guava fruit at different stages of ripening. 2) To study the quality of Casein present in different samples of milk. 3)Preparation of soybean milk and its comparison with natural milk with respect to curd formation etc. 4)A comparative study of the rate of fermentation of following materials: Wheat flour, potato juice, carrot juice, apple juice, etc. Worksheet, MCQ test
		measurement of conductivity of electrolytic solutions and calculation of their molar conductivity.	

June Unit III: Chemical Kinetics No. of Periods: 15	Rate of a reaction (Average and instantaneous), factors affecting rate of reaction: concentration, temperature, catalyst; order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half-life (only for zero and first order reactions).	of solutions with change in their concentration and • Define m (molar conductivity at zero concentration or infinite dilution). • Enunciate Kohlrausch law and learn its applications; • Understand quantitative aspects of electrolysis; • Describe the construction of some primary and secondary batteries and fuel cells; • Explain corrosion as an electrochemical process. The student will be able to • Understand the importance of rate of a reaction in daily life. • Understand the factors affecting rate of a reaction. • Understand average rate & instantaneous rate. • Apply Arhennius equation & activation energy. • Explain the role of temperature & concentration on the Rate of a reaction. • Understand the mechanism of reaction.	Unit Test - 1 A. Surface Chemistry (a) Preparation of one lyophilic and one lyophobic sol Lyophilic sol - starch, egg albumin and gum Lyophobic sol - aluminium hydroxide, ferric hydroxide, arsenous sulphide. (b) Dialysis of sol-prepared in (a) above. (c) Study of the role of emulsifying agents in stabilizing the emulsion of different oils.

		profile diagram.	(a) Effect of concentration
			and temperature on the rate
			of reaction between Sodium
			Thiosulphate and
			Hydrochloric acid.
			(b) Study of reaction rates of
			any one of the following:
			(i) Reaction of Iodide ion
			with Hydrogen Peroxide at
			room temperature using
			different concentration of
			Iodide ions.
			(ii) Reaction between
			Potassium Iodate, (KIO ₃)
			and Sodium Sulphite:
			(Na ₂ SO ₃) using starch
			solution as indicator (clock
			reaction).
July, August	General introduction,	The student will be able to	Periodic Test
Unit IV:	electronic configuration,	• Describes the importance of d & f	C. Thermochemistry
d and f Block	occurrence and	block elements in our daily life.	Any one of the following
Elements	characteristics of transition	• Describes the general properties of	experiments
No. of Periods: 26	metals, general trends in	d & f block elements.	i) Enthalpy of dissolution of
	properties of the first row	• Distinguishes d & f block elements	Copper Sulphate or
	transition metals – metallic	on the basis of their electronic	Potassium Nitrate.
	character, ionization	configuration.	ii) Enthalpy of
	enthalpy, oxidation states,	• Writes the general outer electronic	neutralization of strong acid
	ionic radii, colour, catalytic	configuration of d & f block	(HCI) and strong base
	property, magnetic properties,	elements.	(NaOH)
	interstitial compounds, alloy	• Understands the reason for	iii) Determination of
	formation.	different properties of d & f block	enthaply change during

	Lanthanoids - Electronic configuration, oxidation states and lanthanoid contraction and its consequences.	 elements. Calculates magnetic moment and expresses it in correct unit. Understands the splitting of d orbitals and explains colour of compounds. Understands the preparation of potassium dichromate and potassium permanganate from their ore. Draws the structure of chromate , dichromate , manganate and Permanganate ions. Writes ionic equation showing oxidizing property of potassium dichromate and potassium permanganate. Understands lanthanide contraction and explains its reason. Projects the consequences of lanthanide contraction. Understands the components of alloy misch metal and knows its use. 	interaction (Hydrogen bond formation) between Acetone and Chloroform. D. Electrochemistry Variation of cell potential in $Zn/Zn^{2+} Cu^{2+}/Cu$ with change in concentration of electrolytes (CuSO ₄ or $ZnSO_4$) at room temperature. E. Chromatography i) Separation of pigments from extracts of leaves and flowers by paper chromatography and determination of Rf values. ii) Separation of constituents present in an inorganic mixture containing two cations
September, October Unit V: Coordination Compounds No. of Periods:24	Coordination compounds - Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding,	 The student will be able to To develop appreciation for the postulates of Werner's theory of coordination compounds; To know the meaning of the terms: coordination entity, central 	Unit Test -2 F. Preparation of Inorganic Compounds Preparation of double salt of Ferrous Ammonium Sulphate or Potash Alum.

	Werner's theory, VBT, and	atom/ion, ligand, coordination	Preparation of Potassium
	CFT.	number, coordination sphere,	Ferric Oxalate.
		coordination polyhedron, oxidation	G. Preparation of Organic
		number, homoleptic and	Compounds Preparation of
		heteroleptic;	any one of the following
		• To learn the rules of nomenclature	compounds i) Acetanilide
		of coordination compounds;	ii) Di –benzalAcetone
		• To Write the formulas and names	iii) p-Nitroacetanilide
		of mononuclear coordination	iv) Aniline yellow or 2 -
		compounds;	Naphthol Anilinedye.
		• To define different types of	H. Tests for the functional
		isomerism in coordination	groups present in organic
		compounds;	compounds.
		• To understand the nature of	I. Characteristic tests of
		bonding in coordination	carbohydrates, fats and
		compounds in terms of the Valence	proteins in pure samples
		Bond and Crystal Field	and their detection in given
		theories;	foodstuffs.
		• To appreciate the importance and	J. Determination of
		applications of coordination	concentration/ molarity of
		compounds in our day to day life.	KMnO ₄ solution by titrating
			it against a standard
			solution of: i) Oxalic acid, ii)
			Ferrous Ammonium
			Sulphate.
			Half Yearly Examination
			Determination of one cation
			one anion in the compound.
November	Revision		
December	Preboard Examinations		
January	Practical Examination		

	1 /	· · · · · · · · · · · · · · · · · · ·
	1 /	· · · · · · · · · · · · · · · · · · ·
	1 /	
	1 /	