VIDYA PRATISHTHAN'S

DR. CYRUS POONAWALLA SCHOOL(CBSE), BARAMATI
ANNUAL CURRICULUM PLANNING, 2024-25
Subject : Mathematics(041)
Class : XII
Marks: 100

Sr. No.	Content/ Topic	Month 8 No. of Days	$21^{\text {st }}$ Century Skills	Learning Objectives	Expected Learn Outcome
1	Relations and Functions	March14 Days	Through problems based on Relations and functions they will Develop: 1)Logical thinking 2)Critical thinking 3)Imagination	To enable the students to understand the role of Relations and Functions Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto and bijective functions.	Students learnt abo Equivalence relatio bijective functions. Different types of relations and funct
2	Inverse Trigonometric Functions	March-09D ays April-03 Days	Through approach adopted for problems students will attain 1)Imagination 2)Systematic approach	Students will be able to find solutions of problems of inverse trigonometric functions. Inverse trigonometric functions ,its domain and range	Students learned al Solutions of probler inverse trigonometr functions. Inverse trigonometric funct ,its domain and ran

1. Row matrix

(123)
2. Column matrix
3. Rectangular matrix
$\left[\begin{array}{lll}1 & 3 & 4 \\ 2 & 5 & 2\end{array}\right]$

4. Square matrix

$\left[\begin{array}{lll}1 & 3 & 4 \\ 5 & 2 & 4 \\ 1 & 9 & 6\end{array}\right]$

5. zero matrix

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

6. Diagonal matrix
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

April-15

Through problems based on Matrix and Determinants, they will develop 1)Imagination 2)Systematic approach 3)To handle real life situation

Students will be able to learn:
Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2).

Students would be to :
Concept, notation, equality, types of matrices, zero and identity matrix, trar of a matrix, symmet and skew symmetri matrices. Operation matrices: Addition multiplication and multiplication with scalar. Simple prop of addition, multipl and scalar multiplic Noncommutativity multiplication of ma and existence of no matrices whose pro is the zero matrix (r to square matrices order 2).

4	Determinants For every square matrix $A=\left[a_{i j}\right]$ of order n, we can associate a number called determinant of square matrix. It is denoted by $\|A\|$ or $\operatorname{det}(A)$. Evaluating Determinants (1) Order One: $\begin{aligned} A & =[a] \\ \|A\| & =\|a\| \\ & =a \end{aligned}$ $\begin{array}{ll} \text { (3) Order Three: } & \|A\|=\left\lvert\, \begin{array}{ll} a_{11} & a_{22} \\ a_{21} & a_{13} \\ A & \left.=\left\lvert\, \begin{array}{lll} a_{11} & a_{22}-a_{12} a_{21} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right.\right] \\ \|A\|=\left\|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\|=a_{11}\left\|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right\|-a_{12}\left\|\begin{array}{ll} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array}\right\|+a_{13}\left\|\begin{array}{ll} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right\| \end{array} .\right. \end{array}$ Properties Of Determinants (1) Property 1: Interchanging rows with columns $\left\|\begin{array}{lll} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{array}\right\|=\left\|\begin{array}{lll} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{array}\right\|$ (2) Property 2: Interchanging any two rows/ columns $\left\|\begin{array}{lll} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{array}\right\|=-\left\|\begin{array}{lll} b_{1} & b_{2} & b_{3} \\ a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{array}\right\|$ (3) Property 3: When any two rows/ columns are equal $\left\|\begin{array}{lll} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ b_{1} & b_{2} & b_{3} \end{array}\right\|=0$	April 05 Days, May05 Days	Through problems based on Matrix and Determinants, they will develop 1)Imagination 2)Systematic approach 3)To handle real life situatio	Students will able to describe Determinant of a square matrix (up to 3×3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.	Students would be to learn: Determinant of a sc matrix (up to 3×3 matrices), minors, co-factors and applications of determinants in fin the area of a triang Adjoint and inverse square matrix. Consistency, inconsistency and number of solution system of linear equations by examp solving system of lir equations in two or variables (having ur solution) using inve a matrix.
5	Continuity and Differentiability	May08Days,	To enable the students to	Students will be able to learn: Continuity and	Students would be to learn:

	Theorems on Rolle's Theorem Let f be a function that satisfies the following three hypothesis: 1. f is continuous on the closed interval $[a, b]$. 2. f is differentiable on the open interval (a, b). 3. $f(a)=f(b)$ Then there is a number c in (a, b) such that $f^{\prime}(c)=0$. Graphical Representation The Mean Value Theorem Let f be a function that satisfies the fo hypothesis: 1. f is continuous on the closed interval $[a, b]$. 2. f is differentiable on the open interval (a, b). Then three is a number c in (a, b) such that $\begin{gathered} f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\ f(b)-f(a)=f^{\prime}(c)(b-a) \end{gathered}$ Graphical Representation	June 10 Days	understand 1)Through problems based Rolles Theorem and Mean value Theorem imagination skills are imbibed. 2)Derivatives are used in economics to find out cost function and application skill will developed.
6	Applications of Derivatives	June 08 Days	Through problems based on AOD, they will develop 1)Imagination 2)Systematic approach 3)To handle real life situation

differentiability, chain rule, derivative of inverse trigonometric functions, x , x and x, derivative of implicit functions. Concept of exponential and logarithmic functions. Derivatives of logarithmic and exponential functions. Logarithmic
differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

Continuity and differentiability, cha rule, derivative of in trigonometric functi x, x and x, derivati implicit functions. Concept of exponen and logarithmic functions. Derivativ logarithmic and exponential functio Logarithmic differentiation, deri of functions expres parametric forms. S order derivatives.

Learners will be able to understand the Applications of derivatives: increasing/decreasing functions, tangents and normal, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate

				basic principles and understanding of the subject as well as real life situations).	basic principles anc understanding of th subject as well as r situations).
7	Integrals	July-15 Days	Through problems based on integration, they will develop 1)Manipulation (assumption) 2) Logical thinking 3) Systematic approach	Understand and appreciate the role of Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, properties of Definite integrals	Students would be to:- Understand and appreciate the role Integration as inver process of different Integration of a var functions by substitution, by pa fractions and by pa properties of Definit integrals

	(i) $\int \frac{d x}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left\|\frac{x-a}{x+a}\right\|+C$ (ii) $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left\|\frac{a+x}{a-x}\right\|+\mathrm{C}$ (iii) $\int \frac{d x}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$ (iv) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C$ (v) $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left\|x+\sqrt{x^{2}-a^{2}}\right\|+C$ (vi) $\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left(x+\sqrt{x^{2}+a^{2}}\right)+\mathrm{C}$				
8	Applications of the Integrals	July-04 Days, August- 05 Days	To enable the students to develop 1)Critical thinking to visualize shapes 2) Accuracy for calculating area	Students will able to define Applications in finding the area under simple curves, especially lines, parabolas; area of circles /ellipses (in standard form only) (the region should be clearly identifiable).	Students would be to define:- Applications in fin the area under sim curves, especially l parabolas; area of /ellipses (in standa form only) (the regi should be clearly identifiable).

9	Differential Equations	August- 13 Days	To enable the students to understand 1)Different types solution 2)Different approaches for solution to problem

The students will be able to define Definition, order and degree, general and particular solutions of a differential equation Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order.

Students would be to define:
Definition, order an degree, general and particular solutions differential equatior Solution of different equations by metho separation of variab solutions of homogeneous differ equations of first or

Itis ssedtiosovere anequation in which varidedes Canbesespatatec conpledely.

Adifferentia equitionofitheform $\frac{d y}{d x}+P y=$ WwhereP,, Qare constants
 Linearifiterentid Eppation andilis sulutionis $y e^{p \cdot d x}=\int$ Q.e. $e^{P \cdot d x} d x+c$.

Adifienerial equation which canh be expessesed intheform $\frac{d y}{d x}=\{(x, y)$)o:
 aHonnogreous Siliferentid Equation.

12	Linear Programming Liner programming problem aims at finding optimum solution for a giver linear function called the objective function subject to some given constraints on the variables Linear function $\mathrm{Z}=\mathrm{ax}+\mathrm{by}$, where a, b are constants, which has to be maximized or minimized is called a linear objective function Objective function Optimization Problem The linear inequalities or equations or restrictions on the variables of a linear programming problem are called constraints. The conditions $x \geq 0, y \geq 0$ are called non-negative restrictions. A problem which seeks to maximinize or minimize a linear function subject to certain constraints as detrmined by a set of linear inequalities is called an optimization problem. Linear programming problems are a special type of optimization problems.	October-10 Days	Through this chapter students will attain 1) To handle optimization problems(Efficiency) 2) develop Systematic approach 3)Differentiate constraint from problem.	Students will be able to Understand Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).	Students would be to Understand Introduction, relate terminology such a constraints, objecti function, optimizati graphical method o solution for problen two variables, feasil and infeasible regio (bounded or unbou feasible and infeasi solutions, optimal feasible solutions (u three non-trivial constraints).
13	Probability	October-06 Days November-1 0 Days	Through this chapter students will develop 1)Logical thinking	Students will be able to understand Conditional probability, multiplication theorem on	Students would be to understand Conditional probab multiplication theor

